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The effective viscosity and heat conductivity coefficients of dispersed media 
with spherically symmetric particles are calculated for various shapes of the 
binary distribution function. 

Consider an isotropic dispersed medium, consisting of a continuous phase and solid 
spherical particles of radius a, whose bulk concentration is constant, randomly distributed 
in it. In the general case both phases can be mobile and have different velocities. 

For such a system, satisfying all basic applicability conditions of the method of [|] 
and based on it, we calculate below the effective viscosity and heat conductivity coeffi- 
cients, characterizing the momentum and heat transport, respectively. These coefficients 
appear in the equations describing transport processes for the medium as a whole. 

Momentum Transport. Let the dispersed system be a suspension, whose continuous phase 
is a Newtonian fluid of viscosity Do and density do. The Reynolds number, characterizing 
both local transport near the particles and the motion of the suspension as a whole, is 
assumed small in comparison with unity. The stationary motion of the suspension as a whole 
in the laboratory system of coordinates r is described by the mass and momentum conservation 
equations [I] 

Vc = 0; --VP + pAc - -  dv@ = 0; 

4 
c~--eco+9ci ;  d -~ edo + pdi; 9 = l - -  e; p = - -  ~aSn. (1 )  

3 

The effective viscosity coefficient ~ appearing in (I) is determined from the self-consis- 
tency condition [|] 

( ~ I % ) A v = v  9 ~ a , ~  ~ x ~ n o ( a / O ) d x + p I  . (2) 
X ~ a  

Here ~(a/0) is the tensor of conditional mean stresses acting on the surface x = a through a 
separate ("trial") particle, and calculated by solving the flow problem of this particle in 
some fictitious homogeneous medium. The rheological properties of this medium when moving 
away from the particle surface coincide with the properties of the suspension as a whole, but 
at distances comparable with the particle radius they depend on distance. 

We note that in the case under consideration the spatial derivatives of velocity in the 
laboratory and convective coordinate system x, related to the center of the trial particle, 
coincide. 

In determining the effective viscosity of the suspension the single-velocity model used 
here and the two-velocity model [2] give identical results. In calculating the sagging veloc- 
ity of the suspension, however, which is beyond the scope of the present paper, it is neces- 
sary to use the two-velocity model. 

Let the phase densities coincide d~ = do, with the perturbation fields of velocity 
and ~ carried by the "trial" particle in the two-phase flow being determined by solving the 
problems [1,2] 

Vv = 0; - - V P +  2 v ~ e =  0; 

~ = - v + o x x ; x = a ; ~ ,  ~-,-0;x-,-oo; 

g=~o+(~--~o)*(~, p); ~=x/a; s -3-~x~ T--~x~ ' (3) 

All-Union Research Institute of Petroleum Chemistry, Leningrad. Translated from Inzhen- 
erno-Fizicheskii Zhurnal, Vol. 37, No. 1, pp. 110-I17, July, 1979. Original article submitted 
July 25, 1978. 

0022-0841/79/3701-0833507.50 �9 1980 Plenum Publishing Corporation 833 



where ~ is the velocity deformation tensor, and ~(~, p) characterizes features of Particle 
distributions in the close neighborhood of an isolated particle. It can be shown* that the 
function ~($, p) is uniquely determined by the binary distribution function (BDF) 

~(~, ~ =  9-i ~ n~'/O)dx'; n ~ / ~ =  N~(x/O); ~ ' - - x l < a ,  Ix'I> 2a, 

where n(x/O) is the conditional computed particle concentration. 

Using the central symmetry, we obtain from (4) 

( 

2r i 
n (n, p)(~z + n2 _ I -- 2~n) nd,i, 1 ~< ~ ~< 3; 

p)=l 

i J 4~ t ,  
X. 

(4) 

(5) 

For closure of problem (3) it is necessary to know the BDF appearing in (5). The de- 
termination of this function is a complicated problem of statistical physics and is possible 
only in the simplest of cases. 

For opaque particles randomly arranged this problem was solved [3] in the superposition 
approximation, where it was shown that the BDF is an oscillating damped function, whose am- 
plitude and amount of damping depend on the bulk concentration of the dispersed phase. The 
results of [3] were obtained under the assumption of chaotic particle arrangement. 

The solution of the problem becomes more complicated for a suspension, since the binary 
distribution function depends on the flow parameters of the suspension, which in turn depend 
on the distribution function. Consequently, to determine the unknown function it is neces- 
sary to solve simultaneously an equation of type (3) and an equation describing the behavior 
of the BDF. For a quite dilute suspension, when it is sufficient to take into account pair 
interactions only, this problem was solved in [4]. In this case it was assumed that the 
suspension participates in purely linear shear motion. The BDF obtained in [4] was indepen- 
dent of the bulk concentration of the dispersed phase. This function is assumed given in the 
present paper. 

Solution of the Test Particle Problem. To solve the problem (3) we use the method de- 
veloped in [5], where we seek a solution of (3) in the form of series in basis vector func- 
tions, constructed on spherical functions 

m=0 ~0 

while the functions fm, gm, and I m depend only on $ and can be determined by the system of 
equations 

[l+(v--1)~|[gzf~ +2~fm - ( 2 + r e ( m +  1))fm+2m(m+l)gm]--~ml~+2(v--1)g2~q~ =0' (7) 

[1 + (v -- I) ~][~Zg~ + 2~g~ - -  m (m + 1) g ~ +  2fro] - -  ~Im + ~ -- 1) ~ '  (~g~ + fro-- gin) = O. 

Here the prime denotes differentiation with respect to ~ and we have introduced the dimen- 
sionless effective viscosity coefficient v = ~/~o. 

The unperturbed fields v and p can also be represented in the form of series of type (6) 
with functions F m, Gm, and Lm. The coefficients of these functions are expressed in terms 
of values of the velocity v and its derivatives at the point occupied by the center of the 
test particle, and, consequently, can be considered as given a priori [5]. 

The boundary conditions for (7) are 

fm =--Fm,  gm = - - O =  ~ =  1, fro; gin, lm --~0 ~ - - ~ -  (8) 

*A detailed discussion of this problem is given, besides [I], in: Yu. A. Buevich, B. S. 
Endler, and I. N. Shchelchkova, "Continuum mechanics of multidispersed suspensions; rheologi- 
cal equations of state," Preprint No. 85, Inst. Prikl. Mekh. Akad. Nauk SSR, Moscow (1977). 
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Fig. I. Distance dependence of the function 4: 
I) interpenetrating particle model, 2) model using 
a stepwise BDF, 3) model using the BDF of [3] with 
p = 0.144; 4) 0.353; 5) 0.482; 6) model with a 
ring. 

The solution of the problem (7), (8) completely determines the series (6) for the per- 
turbation field and allows us to calculate the integral appearing in (2), which can be rep- 
resented in the form 

3 I x  1 K(Z)Ae" 4-~a a ,~ . no (a/O)dx = - - p l  + ~o5K(t) e + 9oa ~ 2 (9)  

x.-~_.a 

The c o e f f i c i e n t s  K (x) and K (2) depend  on v,  9 and on t he  shape  of  t he  f u n c t i o n  * ( ~ ,  O) b e i n g  
used. 

we note that due to the orthogonality of spherical functions only terms of the series 
(6) containing s2 contribute to the surface integral (9). Therefore the lower subscript is 
henceforth omitted, being implied that it equals 2. 

Taking into account that V(Ae) = (|/2)A2v ~---0, we obtain from (2) and (9) an equation, 
determining the unknown parameter 

5 pKO) (v, p) v = 1 +  ~ ( ] o )  

and the complete closure of the problem. 

To solve (7), (8) numerically we transform them to the form 

g - -  z2f " = 0; A~g" + A2y' + A3g + Btf' + B2f = 0; 

AI = --[1 +, (v ~ 1) ,1 - ~ -  ; A~ =( I  --v) , '  z-J-~3 " 

7 1 (1 _ v),,,z2; A s = ~ i l + ( v ~ l ) r  g 

2 (1 - v) z (2~' + z,"); B, = ~ 7  (v - -  1 ) , ' z ;  B2 = ~ 4 [ 1  + (v - -  1 ) , ] - ] -  

(11 )  
f = f ' = 0  z = 0 ;  f + F = 0 ,  [ ' + 2 F - - 6 G = 0  z = l ,  

where z = ~-i, the prime denotes differentiation with respect to z, and y(z) is a new func- 
tion, determined by the first equation of (|I). In deriving the boundary conditions we used 
the assumption that the continuity equation is valid everywhere up to the boundary. 

To obtain the unknown dependence of v on 0 the transcendental equation inv (|0), being 
in the given case 

v = {1 + P[@' (i) + g 0 ) ) /30- -  11}(1 -- ~-1, 

was solved numerically by the Newton method. At each iteration step in v the problem (11) 
was integrated by matrix methods so as to determine the value of the function y and its deriv- 
atives at z = i. 

Rheol0gical Properties of Suspensions. As already mentioned, the BDF determines unique- 
ly the function ~(~, p) appearing in (3). 
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Fig. 2. Dependence of dimensionless suspen- 
sion viscosity on bulk concentration: I) 
interpenetrating particle model, 2) model 
using stepwise BDF, 3) model with a ring, Eq. 
(14), 4) BDF used in [3], 5) cellular model 
[6]; the primed region shows experimental 
data [7]. 

Neglecting the nonoverlap of particles, the BDF is constant and equal to unity in the 
whole interval ~ ~I. In that case ~ = I for ~>~ 1 (Fig. I, curve I). 

This assumption was used [1] in calculating the effective viscosity coefficient of 
moderately concentrated suspensions, and in [2] in determining the sedimentation velocity of 
these suspensions. The dependence obtained in [I] is represented graphically on curve 1 of 
Fig. 2. 

Account of particle impenetrability leads to a more complicated form of the function 
~(~, p).  Using a BDF of the form 

we obtain from (5) 

27--56~+30~"--~ '  1 < ~ 3 ,  

1 .~ > 3 
(12) 

(Fig. I, curve 2). We note that the function ~(~) of (12) is independent of the magnitude of 
the bulk concentration of the dispersed phase. The dependence of the dimensionless effective 
viscosity coefficient v on the bulk concentration 0, obtained as a result of numerical calcu- 
lations with account of (121, is shown on Fig. 2, curve 2. 

As a simplest approximation to (12) we use in the present paper the function 

~($) = { 0 I ~2, (131 
�9 I ~>2 

(Fig. l, the broken line 6)~ In this case the problem (7), (8) has an analytic Solution, 
whose substitution in (I0) gives the following equation, determining the 0-dependence of ~: 

v = I + p O.7665vs+6.0455v2-}-5.9595v+ 1.2285 (14) 
0.7665vz+3.002v-l-l.8315 

(Fig. 2, curve 3). Using the BDF of [3], the dependence ~(~, 0) was obtained numerically in 
the present work (Fig. I, curves 3-5). The results of calculating the 0-dependence of ~, 
performed with the employment of this model, are shown in Fig. 2, curve 4. 

For comparison Fig. 2 shows the 0-dependence of v, obtained in [6] on the basis of the 
cellular model. 

The dashed region on Fig. 2 is formed by experimental data of sixteen papers, reviewed 
in [7]. The significant spread in the experimental data is related to the effect of many 
factors on measurement results: the type of viscosimeter used [8], the ratio of particle 
size to the size of flow region [8,9], the shear velocity [10], etc. 
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Fig. 3. Dependence of the relative heat conductivity 
of a dispersed medium on bulk concentration: I) at 

= 0; 2) 0.172; 3) 3; 4) 15.7; 5) I00; 6)>>I: exper- 
mental data at x = 0: a) [12]; b) [13]; c) [14]; d) 
[15]; e) at x= 0.172; f)>> i; g) 15.7; h) 101. 

Fig. 4. Dependence of the relative heat conductivity 
of a dispersed medium on bulk concentration at ~= I00 
(dashed) and x = 0.1 (full line) according to models: 
I) of interpenetrating particles; 2) with a ring; 3) 
using a stepwise BDF [3]; and 4) results of the present 
work. 

Comparison of the theoretical and experimental data shows that the model of impenetrable 
particles gives quite good results for moderately concentrated suspensions, but it enhances 
the value of the effective viscosity coefficient of suspensions of "mean" concentration, 
while for 0 -+ 40% the value of the effective suspension viscosity becomes infinite. 

Account of particle impenetrability becomes essential in determining the rheological 
characteristics of suspensions with higher than 20-25% concentration. 

Heat Transport. Consider heat transport in a dispersed medium, both of whose phases 
can be mobile, under the assumption that the Peclet number, characterizing local convective 
transport near isolated particles of the dispersed phase flowing around the continuous phase, 
is small in comparison with unity. Obviously, the model under consideration is also valid 
for composite materials, whose matrix and dispersed phase have different heat conductivity 
coefficients. 

According to [11], where references to related work can be found, the effective heat 
conductivity coefficient is represented in the form 

where the unknown parameter y i s  determined from the equation (compare with Eq. (2)) 

?E : p ( +  ~a3) -I ~ ~ (a/O) ndx, (16) 
X ~ a  

*(a/0) while in determining the ensemble averaged of neighboring particles of temperature T~ 
at the surface of the test particle (16) the following boundary-value problem is obtained: 

V[R(xla)v~=O x>a; A ~ = O  O~x<~a; 

~ - ~ 0  x ~ ;  ~<oo x = O ;  ( 1 7 )  

~ +  Ex =7~;  ~onv~+ ~nE = ~tnv~ x = a; 
R = 1 + (z  - -  l)  ~ (~, p). 

The function ,(~, 0) is determined by the shape of the BDF according to (5). 

Using the method discussed above of expanding the solutions in series of spherical 
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functions we solved problem (17) in the present work, and determined the dependence of B on 
O and ~ (Fig. 3). In the calculations we used the BDF obtained in [3] (see above). 

As seen From Fig. 3, the dependence of the heat conductivity of a dispersed medium on 
the ratio of heat conductivities of the dispersed and continuous phases is most important at 
~i0. For ~ < 0.] and ~> 100 the effective heat conductivity practically coincides with 

its values in the limiting cases ~§ 0 and ~ § ~, i.e., when the dispersed phase consists of 
absolutely nonconducting or'ideallyconducting particles, respectively. 

Using the fact that transport of heat, mass, or electric discharges under the approxi- 
mations made is described by mathematically equivalentequations and, consequently, the 
dimensionless effective transport coefficients of these substances coincide, the results 
of calculations shown on Fig. 3 are equal to experimental data [12-]5] on electric conductiv- 
ity of stable emulsions. It is seen that the agreement between experiment and theory is 
quite good. 

Comparison with data available in the literature on the effective heat conductivity of 
a stationary granular layer is not possible in the general case, since in the given paper no 
account is taken of heat transport in the dispersed phase due to particle contact. 

To compare the various models we show in Fig. 4 a family of functions 8 = 8(~, P) at 
= 100 and ~ = 0.], obtained earlier under the following assumptions []I], similar to those 

made above: neglecting the nonoverlap of particles, curve ]; using the simplest representa- 
tion of ~(~, p), taking into account particle impenetrability in the form (23), curve 2; 
#(~) given in the form (12), curve 3. Also shown in Fig. 4 (curve 4) are results of calcu- 
lations performed earlier. 

It is seen by comparing Figs. 2 and 4 that the results of calculations, performed by 
using various BDF shapes and taking into account particle impenetrability (curves 2, 3, 4 on 
Figs. 2 and 4), give practically identical results for some effective heat conductivity. 
On the other hand, the values of the effective viscosity coefficient, as follows from Fig. 
2, depends strongly on the BDF shape. In connection with the discussion above one must 
recall the large spread in experimental data of the effective viscosity coefficient of the 
suspension and the significantly smaller deviation between experimental data on effective 
heat conductivity coefficients. This is related to the structure of the dispersed phase, 
observed in real situations and leading to changes in the BDF shape. 

NOTATION 

Here a is the particle radius; A i and B i are coefficients in Eq. (ii); c is the velocity 
in the laboratory coordinate system r; d is the density; e is the tensor of velocity defor- 
mations; fm' Fm' gm, Gm, Im' Lm are functions in Eq. (6); I is the unit tensor; E is the 
mean density vector of thermal flux; K (I) and K (2) are coefficients in Eq. (9); m is the 
order of spherical harmonics; n is the unit vector of the outer normal to the surface of the 
test particle; N is the number of particles in the bulk; p is pressure; v Ss the velocity 
in the convective coordinate system x, referring to the center of the test particle; x' 
is the radius-vector of the particle center; y(z) is the function in Eq. (ii); z is the 
independent variable in (ii); 6 is the dimensionless effective heat conduction coefficient; 
y is the coefficient in (15); e is the porosity; n is the variable in (5); ~ is the heat 
conduction ratio of dispersed and nondispersed phases; ~ is the heat conduction coefficient; u 
is the viscosity; ~ is the dimensionless effective viscosity coefficient; ~ is the variable 
in (3) and later; p is the bulk concentration of the dispersed phase; ~ is the stress tensor; 
T is the temperature; ~ is the potential of external mass forces; @ is the binary distribu- 
tion; ~ is the function defined in (4); ~ is the angular velocity; the lower subscripts 0 
refer to the continuous and dispersed phases, respectively; the asterisk denotes dyad multi- 
plication; the overhead symbol denotes the perturbed field induced by the test particles; and 
the asterisk on top denotes temperature inside the test particle. 
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